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Abstract—The regular perturbation solution of heat transfer is developed for eccentric cylinders rotating
with different velocities. The solution has been obtained by using a bipolar coordinate system. An attempt has
been made to remove the restriction of small clearance ratio from previous work.

NOMENCLATURE

b, characteristic length of the problem;

C,, specific heat at constant volume;;

E, Eckert number,
(R2Q? + RZY[CAT, ~ T)];

k, thermal conductivity;

L, x, coordinate of the centre of the outer
cylinder;

Nu, Nusselt number ;

Pr, Prandtl number, puC,/k;

R, radius of inner cylinder;

R, radius of outer cylinder;

R, radius ratio, Ry/R,;

Re, Reynolds number, R p(R2Q? + RZQZ) #/u;

T, dimensionless temperature ;

T, dimensional temperature;

T,, temperatures of the outer and inner cylin-
ders, respectively;
velocity components in ¢ and » directions,
respectively.

Greek symbols

¥, dimensionless stream function;

En, bipolar co-ordinates;

&, displacement of the centre of the inner
cylinder from the centre of the outer
cylinder;

U, viscosity ;

P density;

Q.. angular velocity of the outer cylinder;

Q, angular velocity of the inner cylinder;

Qv velocity ratio, Q /€.

INTRODUCTION

HEAT transfer in concentric cylinders has been exten-
sively studied due to its wide applications in various
engineering devices. A detailed review of the literature
has been made [1]. Relatively little work has been
reported in the literature for eccentric cylinders. Re-
cently Kuehn and Goldstein [2] conducted an exper-
imental study to determine the influence of eccen-
tricity on natural convective heat transfer through a
fluid bounded by two horizontal isothermal cylinders.

It was noted that eccentricity alters the local heat
transfer on cylinders substantially. Experimental re-
sults have also been reported [3]. More recently Yao
[4] investigated natural convection in slightly eccen-
tric annuli. The solution procedure can easily be
extended to the case when the cylinders are not
circular. Singh and Rajvanshi [ 5] have studied the heat
transfer between eccentric cylinders rotating in the
same direction and having different temperatures. The
energy equation has been transformed into the bipolar
coordinate system used by DiPrima and Stuart [6].
Temperature has been obtained as a perturbation
solution in terms of the clearance ratio between two
cylinders (which is assumed to be small) and the
modified Reynolds number. The results are valid for a
small clearance ratio and all values of eccentricity.

In the present paper the problem has been in-
vestigated further with a view to removing the above
restriction on the clearance ratio. The energy equation
is expressed in the bipolar coordinate system [7] and
shown schematically in Fig. 1. The solution has been
obtained by the perturbation method. The results are
valid for arbitrary ratios of the radii of the two
cylinders. The effects of changes in the eccentricity, and
the velocity ratio on temperature profiles and Nusselt
number have been discussed in detail.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Let two eccentric cylinders of radius R; and R (R, >
R,) with parallel axes contain an incompressible
viscous fluid. Both the cylinders are rotating about
their respective axis with angular velocities Q; and Q,
respectively. Let the axes of the outer and inner
cylinder be at (L, 0) and (L — ¢, 0) respectively, in a
rectangular cartesian coordinate system.

Following Ballal and Rivlin [8] we introduce a
bipolar coordinate system (&, #). It is defined as

x, = — bsinh {/(cosh & — cosn), i

i

x, = bsinn/(cosh £ — cosy)

where b is a positive number indicating a characteristic
length. Let & = & and ¢ = &, where ¢ and ¢ are
negative constants, be the surfaces of the inner and
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n=const,

Fia. 1. Bipolar co-ordinate system.

outer cylinders, respectively. R, R,, L and ¢ are defined
as

R, = — bfsmh &, R, = — b/sinh {,
&= — b(coth &, — coth &), L = ~ bcoth&,,

@)

From equation (2) we obtain
b=[(R} + R} — & — 4RIRZ]'*/(2e).  (3)
Let « and v be the velocity components in the £ and
directions respectively, T be the temperature at any
point (&, ), T; and T, be the constant temperatures of

the inner and outer cylinders respectively. The boun-
dary conditions are
u=0,v=RQ, T=T, at £ = ¢, 4
u=0,v=RQ, T=T,até=2~¢,. (5)

0= %0

We define the dimensionless stream function ¢ and
temperature 7T in the following form

(RIQF + RZQZ)' 2 (3W/on) = (H/RJu,
(R2Q? + RIQH)' 2 (8¥/08) = — (H/R,)e,
T = (T - Ti)/(To - Ti)

©®)

where

H = b/(cosh & — cosn) N
and

(T, — T,) will be positive or negative, as T, 2 T}

Using equation (6) the steady state energy equation
for the 2-dim., viscous, incompressible flow in the (£, 7}
coordinate system may be written as

(@2 T/8E%) + (8*T/on*) = Pr Re[(8¢/on)(eT/0%)

— (@¥/jeeNeT/em)) — PrE[AYT + Y3}, (8)
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such that
Y, = [(b/H)&?W/3E0n) + sinh (&Y /an)
+ sin 7(@¥/08)J(R,/b),
Yz = (RybY(B/H)(EPP/on?) — (02¥]02)]
+ 2sin g(W/n) — 2 sinh EEV/RE)}.

Boundary conditions (4) and (5) for temperature
reduce to

T=0 at{=¢, 9)
T=1 até=¢, (10)

For slow motion solution, ¥ and T are assumed in the
form

[¥, T] = [¥OTO] + Re[¥OTV] + O(Re?). (11)

Equation (11} is substituted in equation (8) and the
coefficients of like powers of Re are equated. The first
two equations are as follows:

(@2TO/AE2) + (2T/en?)
= — PrE[4Y?? + Y], (12)
(B2TW/REY) + (2T en?)
= Pr{(@¥ o) @T /%)
— (@Y OeENeT/en)]
— PrE[SYQ YV + 2YQ Y] (13)
where
YO = (R/BY)(b/H)NOP ™ /0Een)
+ sinh &V /én) + sin (¥ Y/38)],
YO = (R/b)[(b/H) PPV en)
+ sinh E@PV/n) + sin g(dPN/3EY],
YO = (R /b){(b/H)[(23PD/en?)
— (PPO/2E2)] + 2sin g0V D/dn)
— 2sinh &(@W0/08))
and
YE = (Ry/b}(B/H)(@™W ™/ on*)
— (B3WWEH)] + 2sin n(@WP )/ en)
— 2sinh &@P/2¢)).

The boundary conditions (9) and (10) take the form

T — = &,
0 at &=¢, (14)

T =1 at {=¢,

T = t &= ¢,
0 a é él (15)

T =0 at {=¢,

SOLUTION OF EQUATIONS
PO is taken from [8] as

YO = H{Fo(¢) + Fi(&)cosn], (16)
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where

Fold) = (Ag + C)cosh & + (B, + Dy&)sinh €,
{n

F,({) = A, cosh 2¢ + B, sinh2¢ + C, ¢ + D, (18)
(Ao, Bo, Co, Do) = (f1, f5. S5, f7) @

+ (oS Jo: J3) B (19)
(4, By, C1, Dy) = (fo. 115 —fs: Jis)a
+ (Jrosfr2 = o J1a) By
such that
a = Y[R + R3],
g= Ié{’%o(&%z :_Rz)z.fz]] } (20
Q (angular velocity ratio) = Q,/Q,, {21)
R (radii ratio) = R/R,. (22)

The quantitiesf;(j = 1 — 14)are defined in ref, [8] and
have not been recorded here for the sake of brevity.
We assume T in the following form:

2
T (¢, n) = PrERZY S,(&cosm.  (23)
n=0
Using equations (16) and (23) in equation (12) and
equating the terms independent of #, the coefficients
of cosn and cos2y in both sides we obtain the
following set of equations:

So = = 2F}* — (Fo — Fp)* = 3F%, (24)
St — 8y = = 2F{(F§ — Fo), (25)
Sy — 48, = 2F% - P72, (26)

where a prime denotes differentiation with respect to £
Boundary conditions (14) take the form

& So = /(PrER]), at & = &, (27)
S, =0,atéf=¢,8, =0até=¢, (28)
Szzosat‘f:ébs‘z:catizéo‘ (29)

Somo, atf

The solution to equation (24), subjected to boun-
dary conditions (27), is given by

Sol) = [@o(&)(Es — &) + @olEME = &)
+ (1/Pr ERINE — &)1/(& — &) = @ol&)  (30)

where

9o(&) = 0.5(A? + BY)cosh 4¢ + 4,B, sinh 4¢
+ 0.54B,C, + C3 + D%)ycosh 2¢
+ (24,C, + CyD,) sinh 2Z
+ (C? —~ C% + DY) ¢2.

The solution of (25) under boundary conditions (28)
is represented by

5.8 = [@i(&)sinh (& — &) + @, (E)sinh (E, — &)]
x cosech (&, — &) — ¢,(&) (31)
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where
@(&) = (4, Dy + B,Cq)cosh 3¢

+ (A4,Cy + B,D,)sinh 3¢
+ 4£[(By,Dy — 4,Co)cosh ¢
+(4,Dy — B,Cy)sinh &}
The solution of (26) under boundary conditions (29)

is obtained as
5(8) = [e2(&,) sinh 2 (£ — &) + @4(&)
x sinh 2 (& — £ Y] cosech 2 (&, ~ &) + (&) (32)
where
@,(&) = £[24,C cosh 2¢ + 2B, C, sinh 2¢]
+ 2(4} — B}) - 4C2.
¥ is taken from ref. [8] as

WO = 2bH Y G,(&) sin m.

m=1

(33)
We assume 7™ as under

T n) = PrERIb 3 J(Osinmy.  (34)

m=1

Equations (13), (33) and (34), the orthogonality
relations for trignometric functions and the relations

2n
J [cos rp/icosh & — cos n)*]dn

]

= 2nexp(ré)}(r — coth &)/sinh? &

give
where
4
K¢) =Y {exp[m + mE](m — n — coth &)

n=1

—exp[(m — n)¢](m + n — coth &)}/(R, sinh? &),
Lu(8) = 4(F — Fo)[ G, + (m* - 1)G,]
+8m + )F, Gy s — 8m — V)F, G, _,
+ 2F[GL., + mim + 2)G, ]
+2Fi[Gr 4 mim — 2)G,,_ ],
R(&) = (Eq + 0.25F))S,
+ E,S, + E,(055, — S)),
Ry (&) = 2EoS, + O5(E,S, — E,S,),
Ry(&) = E,S, — 025(S,F, + 2E,S}),
R,(&) = — 0.5FS,,
Eo(&) = Fycosh & — Fysinh & — 0.5F,
E{(¢) = Ficosh¢ — F,sinh & — Fy,
E;(§) = Fy + F,cosh &,
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The functions G,,(¢) are defined in ref. [8] and are
not recorded here for sake of brevity. The boundary
conditions (15) change to

J, =0,
J, =0,

at é: éh
at & = ¢,

(36)

The solution of equation (35) subjected to boundary
conditions (36) is given by

Jul8) = Pri[es(&,) sinh m(; — &)
+ @3(&;) sinh m(& — &,)] cosech m(, — &)
+ 03O} + {[pal&,)sinhm(¢ — &)
+ @4l&;) sinhm(E, — &£)] cosech m(&, — &)
— @a(d);. (37)

where
@3(&) = exp(mé) | exp( —2m¢) [ fexp(mé)K,,(£)dE]de
@4(&) = exp(mé) | exp(—2mé) [ {exp(m&),(£)dE]dE.

It may be seen from the above analysis that no
restriction has been placed on the eccentricity or the
clearance ratio in obtaining the solution, which isvalid
for slow motion only. Various problems do arise when
one attempts to obtain a solution,at £ = 0and 1. When
& — 0, b and sinh ¢ both approach infinity, so that the
ratio is finite. The problem reduces to that of con-
centric cylinders. The second limit, that is, § — 1 means
b — 0. This reduces the problem to that of two
eccentric cylinders in contact at one point. However,
no attempt has been made in this study to derive the
results for these cases.

TEMPERATURE PROFILES

The important parameters of the problem are £ Q,
R, Pr and E, where ¢ is given by

Z=g/{R, — R,). (38)
We further define
&= (& - &g, — &) (39)

For numerical work we take
Pr=50,R, =10,E = 0.1

R; and ¢ are evaluated for a given set of values of R and
& Using these results b is calculated from equation (3).
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& and & are evaluated using equation (2). Then the
functions f; (i = 1-14) are evaluated using definitions
recorded in ref. [8]. At this stage  is also assigned a
value and the constants Ay, By, Cy, Dy, 4, B, C, and
D, are calculated using equations (19) and (20). Using
these values the other constants occurring in the
solution are evaluated. The temperature profiles are
now obtained from equations (23) and (34) by using
assigned values of Pr and E. Various values were
assigned to the parameters Z Q and R and different sets
of results were obtained. Table 1 depicts the tempera-
ture profiles for various values of R and for fixed values
of other parameters, at 4 = 0 (the point of maximum
clearance). Figure 2 shows the temperature profiles for
various values of £ when outer cylinder is stationary.
Figure 3 shows the same when both the cylinders are
rotating. With increase in £ the convective effects
dominate over the temperature distribution. This
makes the temperature profile more curved. The effect
becomes negligible in the region of minimum clearance
(# = n), where the gap is small.

NUSSELT NUMBER

The heat exchange between the cylinders and the
fluid is measured by the local heat transfer coefficient.
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Fic. 2. Temperature profiles for various £ when outer cylin-
der is stationary.

Table 1. Temperature profiles for various Rat Pr = 50.0 = 0.0, = 02,7 =0

R 0.0 0.2 04 : 0.6 0.8 1.0
0.1 0.0000 04117 0.6308 0.7756 0.8924 1.0000
0.2 0.0000 0.3639 0.5912 0.7520 0.8820 1.0000
0.3 0.0000 0.3341 0.5621 0.7320 0.8723 1.0000
04 0.0000 0.3130 0.5395 0.7153 0.8637 1.0000
0.5 0.0000 0.2972 0.5216 0.7015 0.8565 1.0000
0.6 0.0000 0.2848 0.5072 0.6900 0.8503 1.0000
0.7 0.0000 0.2748 04952 0.6804 0.8451 1.0000
0.8 0.0000 0.2667 0.4852 0.6722 0.8406 1.0000

0.2599 04768 0.6652 0.8368 1.0000

0.9 0.0000
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FiG. 3. Temperature profiles for various £ when both the
cylinders are rotating.

Once the temperature distribution around the cylin-
dersis known, the local heat transfer coefficient can be
evaluated. The Nusselt number at any boundary is
defined as

Nu= —[L AT, —~ T 0T/oN ]y =0

where T, is the wall temperature, T; is the free steam
temperature, L, is a characteristic length and dN is the
length element in the normal direction. Taking T, =

(40)
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T, T; = T, the temperature of the outer cylinder, L,
= banddN = H dfand using equation (6) the Nusselt
number at the inner cylinder is given by

(Nu), = [(b/HY)OT/0E)]: _¢. (41)
Using equations (11), (23) and (34) in equation (40) we

get

2
(Nu), = PrRZE {(b/HL::; [Z Si{&)cosmy
n=0

+ Reb i JL{Eysin mn}% (42)
=1

m
The average Nusselt number on the inner cylinder is
defined as

In
(Nu*); = (1/27R;) J {Nu)i(H)g*:i; dn.  (43)
0

Using equation (41), equation (42) takes the form
(Nu*), = Pr ERIbS(L)/R;. 44)

Similarly the average Nusselt number on the outer
cylinder is obtained as

(Nu*), = Pr ERbSy(E,). 45)

Tables 2 and 3 show the average Nusselt number on
the inner and outer cylinder respectively for varying
conditions of fand R. Figure 4 shows the variations of
the average Nusselt number against Z for various values
of the velocity ratio €. Figure 5 depicts the average
Nusselt number against R for various values of Q.

Table 2. Average Nusselt number on the inner cylinder for varying values of R and § Pr = 5.0, (3 = 0.0

£

R a1 0.2 03 04 05 06 0.7 08 09

0.1 67.4486 32,9880 21.1729 15.0181 11.1264 8.3654 6.2499 4.5378 3.0964
0.2 41.2864 20.3462 13.2323 9.5731 7.2940 5.7034 4.5050 3.5511 2.7598
0.3 34.1840 16,9580 11.1533 8.2008 6.3860 51374 42102 34822 2.8858
0.4 32.5085 16.2166 10,7647 8.0180 6.3489 5.2147 4.3829 37378 32154
0.5 339075 169917 11.3636 8.5509 6.8582 5.7202 4.8948 42616 3.7542
0.6 38.3403 19.2840 129736 9.8409 79710 6.7252 5.8303 5.1503 46105
0.7 474973 23.9601 16.1958 12.3625 10.0898 8.5873 7.5167 6,7097 6.0742
0.8 67.4590 34.1086 23,1417 17.7514 14.5733 12.4855 11.0079 99015 9.0358
09 129.5147 65.6056 41.6430 34.3743 28.3483 244123 21.6389 19.5749 17.9647

Table 3. Average Nusselt number on the outer cylinder for varying values of Rand &, Pr = 50,83 = 00
&

R 0.1 0.2 0.3 04 0.5 06 0.7 038 0.9
0.1 1.2335 0.6095 0.3982 0.2900 0.2330 0.1765 0.1417 0.1143 0.0920
0.2 2.0437 1.0171 06727 04986 0.3925 (0.3203 0.2673 0,2263 0.1935
0.3 3.1380 1.5675 1.0429 0.7793 0.6199 0.5121 0.4337 0.3735 0.3254
0.4 4.6804 2.3413 1.5613 1.1704 0.9346 0.7758 0.6606 0.5724 0.5022
0.5 6.9417 34729 2.3165 1.7373 1.3881 1.1533 0.9833 0.8537 0.7508
0.6 104573 5.2285 34844 26103 2.0833 1.7291 14733 1.2788 1.1251
07 16.4748 8.2290 54754 4.0940 3.2607 27008 22973 1.9912 1.7504
Q.8 28.7386 14.3367 95215 7.1027 5.6424 4.6618 39557 34218 3.0035
09 65.9632 32.8641 21.7833 16.2076 12.8389 10.5789 89518 7.7253 6.7666
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F1G.4. Average Nusselt number against £for various Q, outer
cylinder —— inner cylinder ---.
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TRANSFERT THERMIQUE ENTRE DES CYLINDRES EXCENTRES ET TOURNANTS, AVEC
DES RAYONS DIFFERENTS

Résumé—On présente la solution de perturbation réguliére du transfert de chaleur entre des cylindres

excentrés et tournant 4 des vitesses différentes. La solution est obtenue en utilisant un systéme de

coordonnées bipolaire. Un essai est fait pour éliminer la restriction d’un petit rapport d’espacement faite
précédement par les auteurs.

WARMEUBERTRAGUNG ZWISCHEN EXZENTRISCHEN ROTIERENDEN ZYLINDERN MIT
UNTERSCHIEDLICHEN RADIEN

Zusammenfassung—Die regulire Storungsiosung der Wirmedbertragung wird fiir exzentrische, mit

unterschiedlichen Geschwindigkeiten rotierende Zylinder entwickelt. Die Losung wurde unter Verwendung

eines bipolaren Koordinatensystems erhalten. Dabei wurde gegentiber einer fritheren Arbeit des Autors
angestrebt, die Einschrankung der Guiltigkeit auf kleine Spaltweiten fallen zu lassen.

TEIJIONIEPEHOC MEXAY BPAIMAIOIMMMHUCA IKCHEHTPUYECKHUMH
LIMNHHIPAMU C PAJIMYHBIMU PAIMYCAMHU

AnnoTams—MeTOoA0M BOIMYILEHHA NOJNYMEHO DpELIEHHE 3aJa4H O TENI00OMEHE IKCUECHTPHYECKHX

NHIMHAPOB, BPAIUANMUMXCS ¢ PA3THYHBIMH CKOPOCTAMM. PelueHHe TNONyveHO ¢ HCHONb3OBAHHEM

Gunonaproil cucreMpl koopausat. [peanpuusTa NONLITKa PAacNpOCTPaHUTh Teoputo hHa Oosbiume
3HAYCHHA 3230Pa B OTAK4ME OT npeasinyuielt paboTst asTopoOs.



