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Abstract-The regular perturbation solution of heat transfer is developed for eccentric cylinders rotating 
with different velocities. The solution has been obtained by using a bipolar coordinate system. An attempt has 

been made to remove the restriction of small clearance ratio from previous work. 

b, characteristic length of the problem; 

C”, specific heat at constant volume; 

E, Eckert number, 

k, 
L, 

u, 0, 

(R: Q; + R; Q,‘)/‘[Cv( F, - rf;z)] ; 
thermal conductivity ; 
.x1 coordinate of the centre of the outer 
cylinder ; 
Nusselt number; 
Prandtl number, pC,/k ; 
radius of inner cylinder ; 
radius of outer cylinder ; 
radius ratio, RJR,; 
Reynolds number, Rq(R$t + R,“Cl,‘)’ ‘/p; 
dimensionless temperature; 
dimensional temperature; 
temperatures of the outer and inner cylin- 
ders, respectively ; 
velocity components in 5 and q directions, 
respectively. 

Greek symbols 
v, dimensionless stream function ; 

t3 % bipolar co-ordinates ; 
t; displacement of the centre of the inner 

cylinder from the centre of the outer 
cylinder ; 

P* viscosity ; 
PY density; 

QW angular velocity of the outer cylinder; 
angular velocity of the inner cylinder; 
velocity ratio, QJ&. 

INTRODUCTION 

HEAT transfer in concentric cylinders has been exten- 
sively studied due to its wide applications in various 
engineering devices. A detailed review of the literature 
has been made [I]. Relatively little work has been 
reported in the literature for eccentric cylinders. Re- 
cently Kuehn and Goldstein [2] conducted an exper- 
imentai study to determine the influence of eccen- 
tricity on natural convective heat transfer through a 
fluid bounded by two horizontal isothermal cylinders. 

It was noted that eccentricity alters the local heat 
transfer on cylinders substantially. Experimental re- 
sults have also been reported [3]. More recently Yao 
[4] investigated natural convection in slightly eccen- 
tric annuli. The solution procedure can easily be 
extended to the case when the cylinders are not 
circular. Singh and Rajvanshi [5] have studied the heat 
transfer between eccentric cylinders rotating in the 
same direction and having different temperatures. The 
energy equation has been transformed into the bipolar 
coordinate system used by DiPrima and Stuart [6]. 
Temperature has been obtained as a perturbation 
solution in terms of the clearance ratio between two 
cylinders (which is assumed to be small) and the 
modified Reynolds number. The results are valid for a 
small clearance ratio and all values of eccentricity. 

In the present paper the problem has been in- 
vestigated further with a view to removing the above 
restriction on the clearance ratio. The energy equation 
is expressed in the bipolar coordinate system [7] and 
shown schematically in Fig. 1. The solution has been 
obtained by the perturbation method. The results are 
valid for arbitrary ratios of the radii of the two 
cylinders. The effects ofchanges in the eccentricity, and 
the velocity ratio on temperature profiles and Nusselt 
number have been discussed in detail. 

GOVERNING EQUATIONS AND BOUNDARY CONDlTlONS 

Let two eccentric cylinders of radius R, and RJR, > 
Rif with parallel axes contain an incompressible 
viscous fluid. 30th the cylinders are rotating about 
their respective axis with angular velocities Ri and R, 
respectively. Let the axes of the outer and inner 
cylinder be at (L, 0) and (L - c, 0) respectively, in a 
rectangular Cartesian coordinate system. 

Following Ballal and Rivlin [S] we introduce a 
bipolar coordinate system (f. rl). It is defined as 

x, = - b sinh </(cash < - cos q), 

x2 = b sin q/(cosh 4 - cos ‘I) 
(1) 

where b is a positive number indicating a characteristic 
length. Let 5 = & and 5 = 5,. where & and 5, are 
negative constants, be the surfaces of the inner and 
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Y such that 

Y 

Y, = [(b/H)(?S’/Z<?r) + sinh <(?Y/?q) 

-t sin @YlG)](R,/b), 

Y, = (R,ib)l(b;N)[(~‘Y’~U1*) - (i?f’j?<‘)] 

+ 2 sin a(c’Y/?q) - 2 sinh t(c’Y/?{)j. 

Boundary conditions (4) and (5) for temperature 
reduce to 

., ” T = 0 at 5 = ci, (9) 

T = 1 at s” = <<,. (10) 

For slow motion solution, Y and T are assumed in the 
form 

b b- Y 
FIG. 1. Bipolar co-ordinate system. 

outer cylinders, respectively. Ri, R,, L and I: are defined 
as 

R, = - b/sinh &, R, = - b/sinh &,, 
(2) 

I: = - b(coth 4, - coth &), L = - b coth {,. 

From equation (2) we obtain 

b = [(RF i- R,2 - E’)’ - 4 RfR~]“2/(2c). (3) 

Let u and c’ be thevelocity components in the 5 and q 
directions respectively, T be the temperature at any 
point (5, q), T, and T, be the constant temperatures of 
the inner and outer cylinders respectively. The boun- 
dary conditions are 

[Y, T] = [Yt0)7’(0)] + Re[Y(‘)7’(‘)] + O(Re’). (11) 

Equation (11) is substjtuted in equation (8) and the 
coefficients of like powers of Re are equated. The first 
two equations are as follows: 

(32T’o’/,?<‘) + ((:2T(0)/iV2) 

= - Pr E[4Y\*)* + Y(,“‘2], (12) 

(,;ZT”‘/?(2) + (~2~1’)~~~2) 

= Pr[(dY(“‘l(7y)(~T~o)/~~~) 

- (c:Y(o)/rg)(pT’0’/~?)1 

- Pr E[fiY(f’ Y(;) + 2Yy’ Y(2l)] 

where 

u = 0, t? = RiRi, T = FT, at 5 = ti, (4) 

u = 0, u = R,R,, ‘i= = T,, at 5 = 5,. (5) 

We define the dimensionless stream function $ and 
temperature T in the following form 

(RfQf + R,“Q,‘)’ ’ (~Y/~~) = (H/R& 
(61 

Y(,@ = (R,/b)[(b!H)(a’Y”“/dSS?) 

+ sinh t(CJYco)/~q) + sin o(aY(“/c7{)], 

Yc;) = (R,/b)[(b/H)(S’Y”“ldrL3Y) 

-+ sinh g(?Y(“/@) + sin ~(~Y(‘~/~~)~, 

YT) = (R~/b)~(b~~)~(~2Y(o)/~}?2) 

- (c?Y’~‘/?<~)] + 2 sin ~(N”“‘/d~) 

- 2 sinh <(?YcO)/S{)~ 

and 

(R$f + Rf@)’ ’ (?Y/‘?<) = - (H/R&, 

T = (T - Ti)/(To - T,) 

Y;” = (R,/b)i(biW)[(c’*Y’“jiq’) 

- (?2Y(1t/8~z)] + 2 sin 4(?Y”‘/?q) 

- 2 sinh {(?Y(‘)/?<)). 

where 

and 

H = b/(cosh t - cos II) (7) 

(7, - Ti) will be positive or negative, as 7, >< Ti. 
Using equation (6) the steady state energy equation 

for the 2-dim., viscous, incompressible flow in the (& Q) 
coordinate system may be written as 

(?r/a<*) + (c?21‘/3r12) = Pr Re[(@/dr/)(?T/a<) 

- (?Y/iq)(?r/(‘q)] - PrE[l4Y? + r:-j, (8) 

The boundary conditions (9) and (10) take the form 

Tie) = 0 at 4 = &. 
T(O) = 1 at r - 5 - i”,, I 

(14) 

T(‘)=O at {=&, 

T(l) = 0 at < = 5 (15) 
“9 I 

SOLUfiON OF EQUATIONS 

Y(O) is taken from [S] as 

Y”’ = H[F,(<) + F,(g) cos ~1, (16) 

(13) 



where where 

F,(C) = A, cash 25 + B, sinh 25 -I- C,( + D,, (18) 

such that 

n = Q/[R,(P + RZJ1 ‘L], 

8 = R/R&F + IF)“>*] (20) 

Q (angular velacity ratio) = !JJQi, (211 

R (radii ratio) = RJR,. (22) 

The quantitiesfj (i = 1 - 14) are defined in ref. [S] and 
have not been recorded here for the sake of brevity. 

We assume T(O) in the following form: 

T’O’ (5, t/) = Pr ER,2 i Sn(() co5 ny. (23) 
PI=0 

Using equations (16) and (23) in equation (12) and 
equating the terms independent of q, the coefficients 
of cost? and cos 2q in both sides we obtain the 
following set of equations : 

s;; = - 2Fi2 - (F, _ F;;)* _ 932, (24) 

s; - S, = - 2F; (F;; - E,), (25) 

s; - 4S, = 2F;Z - $r;;“. (261 

where a prime denotes differentiation with respect to 5. 
Boundary conditions (14) take the form 

So = 0, at [ = 5i, So = l/(Pr ERI), at c = &,, (27) 

S, = 0, at < = <i, St = 0 at i’ = <,, (281 

S, = 0, at < = ti, S, = 0 at < = 5,. (2% 

The solution to equation (24), subjected to boun- 
dary conditions (271, is given by 

where 

q,(5) = OS(A: f Bf)cosh4< + A,B, sinh45 

+ 0.5(4B,C, + C; + D;)cosh 25 

+ (2A j C, -i- COD,) sinh 25 

+ cc: - c; j_ 0;) 42. 

The solution of (25) under boundary conditions (28) 
is represented by 

Sz(4f = [q,(i)sinh (i” - iri) + ~l(&Isinh (l, - cl] 
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+ (A,C, + R,D,)sinh 3< 

+ 4{[(B,D, - A,C,)cosh g 

+ (A,& - 3, Co) sinh i” ]. 

The solution of (26) under boundary conditions (29) 
is obtained as 

S,(5) = [(PAL) sinh 2 (5i - 0 + qz(&I 

x sinh 2 (5 - &J] cosech 2 (L - 4iI + ~~(0 (32) 

where 

~~(5) = t[2A,C, cash 2< + 2B,C1 sinh 2{] 

f 2(‘4? - B:) - +c;. 

Y(‘) is taken from ref. [S] as 

yl(‘) = 2bH f G,(r) sin “q. (33) 
m=l 

We assume T(l) as under 

T’l’(t, q) = Pr ERzb i J,({)sin mq. (341 
m=l 

Equations (131, (33) and (341, the orthogonality 
relations for trignometric functions and the relations 

s 
;’ [cos rq/(cosh < - cos #Jdr 

= 2a exp(r<)(r - coth <)/sinh V 

giW2 

where 

(351 

K,(gY) = E fexp[(nz + n){](m - M - coth 5) 
n=l 

- w[b - 4t]b f n - coth t))/(R,, sinh2 <), 

r,(5) = 4(F;; - F,)[G; + (VI* - l)G,] 

+ 8(m f 1)F; Gk,, - 8(m - 118’; CL_, 

+ 2F’;[G;+, + Mm + 2F,+,l 

+ 2F’;[G;_, + m(m - 2)G,,_ J, 

RI(<) = (E, + 0.25F;)S, 

+ E,S, 4 E,(0.5S; - So), 

R#) = Z&S, + 0.5(E,S1 - E,S;), 

R3(5) = E,S2 - 0.25(S,F; + 2E,S;), 

R4(t) = - OSF;S,, 

E,(t) = FL cash 5 - F, sinh i” - 0.5F;, 

E,(r) = F; cash 5 - F, sinh 5 - F’,, 
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The functions G,(t) are defined in ref. [S] and are 
not recorded here for sake of brevity. The boundary 
conditions (15) change to 

J, = 0, at r = &, 
(36) 

J, = 0, at 5 = L&, 

The solution ofequation (35) subjected to boundary 
conditions (36) is given by 

J,(4) = MCP&S,) sinh m(5i - 43 
+ f~s(<i) sinh wt(s - &J] cosech m(T, - 5i) 

+ (~~(01 + XR&) sinh ~(5 - Si) 

+ q.+(SJ sinh m(5, - {,l cosech ~(5, - &) 

- (P‘%(5)). (37) 

where 

~(0 = exp(M J exp( - 2m5) [ s exp(rn5)&(5)d5ld5 

(~~(8 = exp(m0 [ exp( - 2~0 [ s exp(ML,(5)d5]d5. 

It may be seen from the above analysis that no 
restriction has been placed on the eccentricity or the 
clearance ratio in obtaining the solution, which isvalid 
for slow motion only. Various problems do arise when 
one attempts to obtain a solution, at t: = 0 and 1. When 
C -+ 0, b and sinh 5 both approach infinity, so that the 
ratio is finite. The problem reduces to that of con- 
centric cylinders. The second limit, that is, C + 1 means 
b + 0. This reduces the problem to that of two 
eccentric cylinders in contact at one point. However, 
no attempt has been made in this study to derive the 
results for these cases. 

TEMPERATURE PROFILES 

The important parameters of the problem are 6 0, 
i?, Pr and E, where C is given by 

<= i:/(R, - Rj). (38) 

We further define 

r = (5 - Si)/(to - Tih (39) 

For numerical work we take 

Pr = 5.0, R, = 1.0, E = 0.1. 

Ri and i: are evaluated for a given set of values of I? and 
t:. Using these results b is calculated from equation (3). 

R 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

& and 5, are evaluated using equation (2). Then the 
functions,fi (i = 1-14) are evaluated using definitions 
recorded in ref. [S]. At this stage iz is also assigned a 
value and the constants A,, B,, C,, D,, A,, I?,, C, and 
D, are calculated using equations (19) and (20). Using 
these values the other constants occurring in the 
solution are evaluated. The temperature profiles are 
now obtained from equations (23) and (34) by using 
assigned values of Pr and E. Various values were 
assigned to the parameters F, Q and l? and different sets 
of results were obtained. Table 1 depicts the tempera- 
ture profiles for various values of I? and for fixed values 
of other parameters, at q = 0 (the point of maximum 
clearance). Figure 2 shows the temperature profiles for 
various values of C when outer cylinder is stationary. 
Figure 3 shows the same when both the cylinders are 
rotating. With increase in C the convective effects 
dominate over the temperature distribution. This 
makes the temperature profile more curved. The effect 
becomes negligible in the region of minimum clearance 
(9 = n), where the gap is small. 

NUSSELT NUMBER 

The heat exchange between the cyfinders and the 
fluid is measured by the local heat transfer coefficient. 

T 1 

FIG. 2. Temperature profiles for various i: when outer cylin- 
der is stationary. 

Table 1. Temperature profiles for various I% at Pr = 5.0. 0 = 0.0, E = 0.2, q = 0 

c 

0.0 
__.____~ 

o.oooo 
o.ooQo 
o.oooo 
o.oooo 
o.oooo 
o.oooo 
o.oooo 
o.ooal 
o.oooa 

0.2 
i 

0.4 0.6 0.8 1.0 

0.4117 0.6308 0.7756 0.8924 l.OGOO 
0.3639 0.5912 0.7520 0.8820 1.oooo 
0.3341 0.5621 0.7320 0.8723 1.0000 
0.3130 0.5395 0.7153 0.8637 l.oOoO 
0.2972 0.5216 0.7015 0.8565 1.oOW 
0.2848 0.5072 0.6900 0.8503 1.oOoO 
0.2748 0.4952 0.6804 0.8451 1.0000 
0.2667 0.4852 0.6722 0.8406 1.0000 
0.2599 0.4768 0.6652 0.8368 i.wOo 
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3. Temperature profiles for various r; when both the 
cylinders are rotating. 

Once the temperature distribution around the cylin- 
ders is known, the Ioeal heat transfer coeEcient can be 
evaluated. The Nusselt number at any boundary is 
defined as 

Nu = - [L&T, - i7rjJ [a-r;ii’N],V=o, (40) 

where 7?, is the wall temperature, ?=t is the free steam 
temperature, L, is a characteristic length and dN is the 
length element in the normal direction. Taking ‘IrW = 

Ti, T, = i;, the temperature of the outer cylinder, L, 
= b and dN = H dr and using equation (6) the Nusselt 
number at the inner cylinder is given by 

(Nu)j = [(WWTlW& (41) 

Using equations (1 l), (23) and (34) in equation (40) we 

get 

The average Nusselt number on the inner cylinder is 
defined as 

(NU*)i = (1/2nR;) (Nn)i(H)i = <, dn. (43) 

Using equation (41), equation (42) takes the form 

(Nu*), = Pr ~R~bS~,~~i~/R~ w 

Similarly the average Nusseh number on the outer 
cylinder is obtained as 

(Nu*), = Pr ER,bgf<,). (45) 

Tables 2 and 3 show the average Nusselt number on 
the inner and outer cylinder respectively for varying 
conditions of Cand 8. Figure 4 shows the variations of 
the average Nusseh number against Efor various values 
of the velocity ratio a. Figure 5 depicts the average 
Nusselt number against l? for various values of a. 

Table 2. Average Nusselt number on the inner cylinder for varying values of I? and T; Pu = 5.0, n = 0.0 
-___ 

E 

R 0.f 0.2 0.3 0.4 CL5 0.6 0.7 0.8 0.9 

0.1 67.4486 32.9880 21.1729 i5.0181 11.1264 8.3454 6.2499 4.5378 3.0964~- 
0.2 41.2864 20.3462 13.2323 9.573 1 7.2940 5.7034 4.5050 3.5511 2.7598 
0.3 34.1840 16.9580 il.1533 8.2008 6.3860 s. 1374 4.2102 3.4822 2.8858 
0.4 32.5085 16.2166 10.7647 8.0180 6.3489 5.2147 4.3829 3.7318 3.2154 
0.5 33.9075 16.9917 11.3636 8.5509 6.8582 5.7202 4.8948 4.2616 3.7542 
0.6 38.3403 19.2840 12.9736 9.8409 7.9710 6.7252 5.8303 5.1503 4.6105 
0.7 47.4973 23.9601 16.1958 12.3625 10.0898 8.5873 7.5167 6.7097 6.0742 
0.8 67.4590 34.1086 23.1417 17.7514 14.5733 12.4855 11.0079 9.9015 9.0358 
0.9 129.5147 65.6056 41.6430 34.3743 28.3483 24.4123 21.6389 19.5749 17.9647 

Table 3. Average Nusseft number on the outer cylinder for varying values of R and cP Pr = 5.4 Q = 0.0 
~._ ~--.. 

r: 
R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

_~.. .-. .~~ 

0.1 1.2335 0.6095 0.3982 0.2900 0.2330 0.1765 0.1417 0.1143 cm920 
0.2 2.0437 1.0171 0.6727 0.4986 0.3925 0.3203 0.2673 0.2263 0.1935 
0.3 3.1380 1.5675 1.0429 0.7793 0.6199 0.5121 0.4337 0.3735 0.3254 
0.4 4.6804 2.3413 1.5613 1.1704 0.9346 0.7758 0.6606 0.5724 0.5022 
0.5 6.9417 3.4729 2.3165 1.7373 1.3881 1.1533 0.9833 0.8537 0.7508 
0.6 10.4573 5.2285 3.4844 2.6103 2.0833 1.7291 1.4733 1.2788 1.1251 
0.7 16.4748 8.2290 5.4754 4.0940 3.2607 2.7OG9 2.2973 1.9912 1.7504 
0.8 28.7386 14.3367 9.5215 7.1027 5.6424 4.6618 3.9557 3.4218 3.0035 
0.9 65.9632 32.8641 21.7833 16.2076 12.8389 10.5789 8.9518 7.7253 6.7666 
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0.1 0.3 0.5 0.7 0.9 

P 

FIG. 4. Average Nusselt number against <for various 0, outer 
cylinder - inner cylinder - - - 
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TRANSFERT THERMIQUE ENTRE DES CYLINDRES EXCENTRES ET TOURNANTS, AVEC 
DES RAYONS DIFFERENTS 

R&umP-On presente la solution de perturbation reguliere du transfert de chaleur entre des cylindres 
excentres et tournant a des vitesses differentes. La solution est obtenue en utilisant un systeme de 
coordonnies bipolaire. Un essai est fait pour eliminer la restriction dun petit rapport d’espacement faite 

precedement par les auteurs. 

W~RME~BERTRAGUNG ZWISCHEN EXZENTRISCHEN ROTIERENDEN ZYLINDERN MIT 
UNTERSCHIEDLICHEN RADIEN 

Zusammenfassung-Die regullre Storungsiijsung der W~rme~bertra~ng wird fur exzentrische, mit 
unterschiedlichen Geschwindigkeiten rotierende Zyiinder entwickelt. Die Losung wurde unter Verwendung 
eines bipolaren Koordinatensystems erhalten. Dabei wurde gegenuber einer fruheren Arbeit des Autors 

angestrebt, die Einschrankung der Giiltigkeit auf kleine Spaltweiten fallen zu lassen. 

TEIIJIOIIEPEHOC MEKAY BPAIIIAIGIIIMMMCFI 3KCLIEHTPM~ECKMMM 
l.@IJIMH~PAMM C PA3JIM’IHbIMM PAAMYCAMM 

.hWmI~SI-MeTOnOM 603Mytnewifi nonyveuo petueme 3anaw 0 TennooGMeHe wXeHTpWWCKMx 

IUUlH"IlpO9, spauatouuxcn c pa3nwmbmm CKO~OCTIMU. Peweune nonyqeno c ncnonb309auueM 
6W,O,,RpHOir CNCTeMbI KOOpLWHaT. npe.WpANSZTa nOnbITKa piWlpC=TpaHMTb TeOpPflO Ha 6onmuae 

ana~euifa 3asopa B 0Tmwe 07 npeabifiytIle& pa6OTbl aBTOpOB. 


